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Abstract

Since generations, singing and speech have been mainly trans-
mitted orally. How does oral transmission shape the evolu-
tion of music? Here, we developed a method for conducting
online transmission experiments, in which sung melodies are
passed from one singer to the next. We show that cognitive
and motor constraints play a profound role in the emergence
of melodic structure. Specifically, initially random tones de-
velop into more structured systems that increasingly reuse and
combine fewer elements, making melodies easier to learn and
transmit over time. We discuss how our findings are compati-
ble with melodic universals found in most human cultures and
culturally specific characteristics of participants’ previous mu-
sical exposure. Overall, our method efficiently automates on-
line singing experiments while enabling large-scale data col-
lection using standard computers available to everyone. We
see great potential in further extending this work to increase
the efficiency, scalability, and diversity of research on cultural
evolution and cognitive science.

Keywords: iterated learning; singing; music; cultural evolu-
tion; transmission experiments.

Introduction

Singing — the vocal production of musical sounds — exists in
every known human culture (Mehr et al., 2019; Nettl, 2010)
and is likely to be amongst the first forms of communica-
tion and musical expression in human evolution (Tomlinson,
2015). Singing may have already been present in our closest
ancient human relatives, Neanderthals (Mithen, 2006); and
singing abilities emerge spontaneously in early child devel-
opment (Dowling, 1999). At around 2 years of age, chil-
dren start to generate recognisable songs and once they reach
adulthood, most people can sing accurately in time and in
tune (Dalla Bella, Giguere, & Peretz, 2007). Thus, singing is
particularly suitable for studying the biological and cultural
foundations of music evolution (Jacoby et al., 2019; Mehr &
Krasnow, 2017).

Oral transmission is the main mechanism by which songs
are passed through generations (Shanahan & Albrecht, 2019).
In this simple act of transmission — hearing and singing back
a song — it is likely that the singer introduces some varia-
tion to the new production, either accidentally or on purpose.
Naively, one might expect that oral transmission just intro-
duces random noise into the sung production. In practice,
however, it is thought that oral transmission shapes musical
systems in systematic ways that reflect human reproduction
biases (Mehr, Krasnow, Bryant, & Hagen, 2020; Savage et
al., 2022). With cultural exposure, people internalize these
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regularities and, in turn, are more likely to feature them in
future productions. Thus, it is possible that the oral transmis-
sion of music in early humans resulted in the emergence of
shared melodic features observed in musical traditions across
the world (Savage, Brown, Sakai, & Currie, 2015; Mehr et
al., 2019).

This paper focuses on transmission biases for melodies,
including both cognitive constraints (categorical perception,
memory limits, prior expectations; Burns, 1999; Greenspon
& Pfordresher, 2019; Thompson, 2013) and motor con-
straints (certain music features are physically easier to pro-
duce than others; Miton, Wolf, Vesper, Knoblich, & Sperber,
2020; Tierney, Russo, & Patel, 2011). For example, memory
biases facilitate the transmission of distinctive melodic fea-
tures, such as the use of scales that are not uniformly symmet-
ric (Pelofi & Farbood, 2021). Many regularities in melodies
may also stem from the energetic costs associated with vocal
production, such as the predominance of arch-shaped melodic
contours or a bias towards small steps between adjacent notes
(Huron, 2006; Savage, Tierney, & Patel, 2017).

Transmission chain experiments have proven particularly
useful to study in the laboratory both perceptual priors and
the evolution of cultural artifacts, such as language (Griffiths
& Kalish, 2005; Langlois, Jacoby, Suchow, & Griffiths, 2021;
Scott-Phillips & Kirby, 2010; Smith, Kirby, & Brighton,
2003; Thompson, Kirby, & Smith, 2016). Recently, re-
searchers have begun to apply similar paradigms to the mu-
sic domain, revealing the emergence of music regularities in
rhythm (Jacoby & McDermott, 2017; Ravignani, Delgado, &
Kirby, 2016) and melody (Lumaca & Baggio, 2017; Shana-
han & Albrecht, 2019; Verhoef & Ravignani, 2021). How-
ever, performing such studies in complex production modali-
ties such as singing is challenging. For example, covering the
vast combinatorial musical space requires multiple transmis-
sion chains per experiment and the use of neutral sampling
procedures that do not introduce bias on the music stimuli
itself. Moreover, production tasks should be natural to partic-
ipants (e.g., singing) and scalable to large-scale data collec-
tion.

Here we developed an automatic online pipeline to perform
large-scale cultural transmission experiments in the singing
modality. Participants are initially presented with a random
“seed” melody (a sequence of pitches randomly generated
from a continuous space) and asked to reproduce it by singing
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back (Figure 1A). Participants’ reproductions are then syn-
thesized on the fly to create the stimuli for the next partic-
ipants. Over the experiment’s generations, participants’ re-
production errors get amplified, reflecting transmission bi-
ases. Importantly, our method does not assume culturally
specific knowledge about scale systems a priori — e.g., using
discrete musical systems such as the Western 12-tone equal
temperament scale. Instead, we randomly sample melodies
from a continuous pitch space. Consequently, our method
is hypothesis-neutral and applicable to individuals from any
musical or cultural background.

We validate this method in two online experiments with
short (three-tone) and longer (five-tone) melodies. We show
that transmission biases in singing can give rise to melodic
structural features that are consistent with statistical univer-
sals — i.e., features that occur frequently in musical traditions
across the world (Savage et al., 2015). In particular, we find
that (1) melodies are biased towards a small vocabulary of in-
tervals (pairs of notes), (2) increasingly exhibit arch-shaped
musical contours (the pitch sequences of ups and downs), and
(3) are composed of small intervals (less than a perfect fifth).
Parallel to this, evolving melodies tend to align with melodic
pleasantness (estimated by a separate rating experiment with
Western listeners) and musical exposure (estimated by a large
corpus of popular Western melodies). As a result, melodies
become increasingly easier to learn and transmit. We con-
clude by discussing the implications and limitations of these
findings.

Methods

Participants

We recruited a total of 186 participants that provided con-
sent in accordance with the Max Planck Society Ethics Coun-
cil approved protocol (application 2020-05). All participants
were recruited online using Amazon Mechanical Turk (AMT)
with the following three constraints on recruitment: (i) par-
ticipants must be from the US, (b) at least 18 years old, and
(iii) have a 95% or higher approval rate on previous tasks on
AMT. Participants were paid at a US $9/hour rate according
to how much of the experiment they completed. The com-
pleted experiments took approximately 20-25 minutes.

Automated Online Implementation

The experiments were implemented in PsyNet (https://
www.psynet.dev/), a Python package for performing com-
plex online behavioral experiments at large scale (e.g., Har-
rison et al., 2020). Participants interact with the experiment
via a Chrome web browser, which communicates with a back-
end Python server cluster responsible for organizing the ex-
periment and collecting data.

Singing Extraction

We use a three-step automated process to estimate the funda-
mental frequency (fO) of notes in vocal productions (Figure
1B). First, we clean the audio signal by applying a band-
pass filter with cutoff frequencies of 80-6000 Hz. Second,
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Figure 1: Online Iterated Singing Paradigm. (A) Participants
hear sequences of tones generated by a computer and repro-
duce them back by singing. Vocal reproductions are syn-
thesized online and played to the next participant as the in-
put melody. (B) Spectrogram showing a three-tone melody
and corresponding vocal reproduction. (C) Singing extrac-
tion: we input the recording from the microphone and esti-
mate MIDI notes using fO extraction techniques.

we apply an autocorrelation-based pitch estimation algorithm
to extract fO pitch from sung segments (Boersma, 1993), im-
plemented using parselmouth (Jadoul, Thompson, & de Boer,
2018), a Python interface to access Praat. Finally, we iden-
tify voiced segments (continuous time spans with reliably fO
tracking), and compute the median fO for each segment (Fig-
ure 1C).

Melody Generation

We parameterize the space of melodies as lists of numbers in
a logarithmic scale, using MIDI (Rothstein, 1992), where a
MIDI note (m) represent a frequency of 440 - 2" Hz. To
generate an initial random melody, we first assign a comfort-
able singing register (low vs high) to each participant based
on their self-reported gender or vocal range. Next, we obtain
a reference pitch for each melody by uniformly sampling a
real number within a roving width of +2.5 semitones around
the center of the singing register (52.5 for low-register and
63.5 for high-register). Roving the reference pitch helps min-
imize carryover effects between trials, where a given trial is
interpreted in terms of an implied tonal context from the pre-
vious trial. Finally, we sample each pitch in the melody from
a uniform distribution with a width of £ 7.5 semitones cen-
tered on the reference pitch.

All tones were 300 ms long in duration and presented with
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Figure 2: Iterated Singing Experiment with Short Melodies.
(A) Participants hear and sing back three-note melodies. (B)
The entropy of the distribution of intervals over generations,
suggesting an increase in combinatorial structure. (C) Two
dimensional KDE over the last three generations. On the top
and right panels we plot the distribution of each interval sep-
arately (dark grey line), including the distribution of the ran-
dom initial set of melodies (red line) and the first three gen-
erations (light grey line). Statistically significant peaks (90%
CI) are indicated by the red dots and shaded areas. Note.
Error bars represent bootstrapped standard error (1000 repli-
cates).

an inter-tone interval of 800 ms. Tones were played using a
piano timbre via Tone.js, a Web Audio framework for gener-
ating sound in the browser (https://tonejs.github.io/).

Procedure

We used a combination of techniques to ensure high data
quality when recruiting participants online in complex pro-
duction experiments (Anglada-Tort, Harrison, & Jacoby,
2022), including audio calibration and recording tests, a pre-
screening task to ensure headphones use (Woods, Siegel,
Traer, & McDermott, 2017), and a singing performance test
to measure participants singing accuracy and exclude both
fraudulent participants and computer bots.
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In the main singing task, participants completed a total of
50 trials, which consisted of hearing a melody and imitating
it by singing back each note to the syllable ‘Ta’. In each trial,
participants were randomly allocated to one of the parallel
transmission chains. Each participant could only contribute
once to each chain, thereby contributing to a maximum of 50
different chains per experiment. After each trial, we analyzed
participants’ recordings (see Singing Extraction) to determine
whether we could detect the requested number of notes per
trial. Trials that did not satisfy this condition failed and did
not contribute to the chain. In such cases, new participants
were allocated to that trial until a valid response was given.

Results
Three-Note Melodies

Experiment 1 examined short melodies composed of two in-
tervals (3 notes, Figure 2A). This stimulus space can be de-
fined along two continuous dimensions (i.e., interval 1 and
interval 2), where integer locations correspond to the West-
ern 12-tone equal temperament scale. We explored this space
with 333 across-participant chains with 10 generations per
chain (3,330 singing trials). A total of 57 US participants
contributed to this experiment (aged 18-63, M = 38.95, SD =
13.31; 41.1% with low and 58.9% with high vocal range).
Figure 2C shows the aggregated results of the iterated
singing experiment using a kernel density estimator (KDE)
over the locations of the reproductions!. Despite making no
assumptions about musical systems a prori, we see that pro-
ductions in the last generations are concentrated in few loca-
tions, displaying a rich structure that is consistent with West-
ern discrete scale systems. For example, the KDE reveals
peaks at common and prototypical interval combinations in
Western music (top-right quadrant in Figure 2C): the major
scale, featuring melodies with consecutive intervals at [4, 3],
[5, 4], and [5, 3]. Another popular area (bottom-right quad-
rant) consists of arch-shaped musical contours (melodies that
first ascend in pitch and then descent), mostly peaking in the
perfect fourth [5, -5] and perfect fifth [7, -7]. We also com-
puted the marginal distribution of the first and second inter-
val separately (see top and right panels in Figure 2C). Inter-
estingly, the two intervals have clearly distinct distributions,
suggesting that they play different roles in two-note melodies.
Next, we used MATLAB’s findpeaks method to identify
significant peaks that correspond to integer semitones cat-
egories. To measure confidence, we repeated this analysis
in 1,000 bootstrap datasets (sampling with replacement over
chains), identifying each time those peaks that fell into inte-
ger semitone categories (£ 0.5 around each integer). We then
calculated the probability of having at least one peak asso-
ciated with each integer category over all bootstrap datasets.
Statistical significant peaks close to integer semitones are in-
dicated in Figure 2C by the red dots and shaded areas, rep-

IThe bandwidth in the 2-dimensional KDE was estimated using
Scott’s method (Scott, 2015). In all other analyses, including 1-
dimensional KDEs, the bandwidth was set to 0.25 (a quarter tone).
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resenting 90% confidence intervals (CI). The observed peaks
are consistent with the notion of consonance in Western mu-
sic (Halpern & Bartlett, 2010) — e.g., peaks in melodic inter-
vals that maximize consonance, such as the major third (4),
perfect fourth (5), and perfect fifth (7).

To assess whether the structure of the distribution of inter-
vals increased over generations, we used Shannon’s entropy
(Shannon, 1948), H = [ p(x,y)log p(x,y) dxdy, where p(x,y)
is estimated from the 2D KDE of Figure 2C. Entropy mea-
sures the extent to which the distribution is random or con-
centrated in particular places in the space (forming “peaks”
or “structure”). As shown in Figure 2B, entropy decreases
significantly over generations (B = -.061, 95% CI [-.077, -
.045])%. This suggests that melodies in later generations are
composed of a smaller vocabulary of intervals that are in-
creasingly reused.

Five-Note Melodies

Experiment 2 examined longer melodies composed of four in-
tervals (five notes, Figure 3A). The resulting stimulus space
comprises four dimensions (one for each interval). We ex-
plored this space with 120 across-participant chains with 10
generations per chain (1,200 singing trials). A total of 38
US participants contributed to this experiment (aged 20-65,
M =38.94, SD = 12.48; 50.51 % with low and 49.49% with
high vocal range). As with three-note melodies, there was
a decrease in entropy® over generations (B = -.235, 95% CI
[-.273, -.197]), suggesting an increase in combinatorial struc-
ture (Figure 3B).

Figure 3C shows the results of the iterated singing experi-
ment by plotting the distribution of the four intervals together
in a 1-dimensional KDE. We identified 6 statistically signifi-
cant peaks close to integer semitones, indicated in Figure 3C
by the red dots and shaded areas representing 90% CI. In ad-
dition, we plot the distributions of the initial stimulus set (red
line) and the reproductions in the last 3 generations but ran-
domizing the order of the pitches in each melody 10 times
(black dashed line). Comparing these distributions empha-
sizes the effect of sequential memory effects and preferences
for certain melodic intervals, such as avoidance to the semi-
tone (1) and attraction to the perfect fourth (5). Furthermore,
Figure 3D shows the evolution of each interval separately,
indicating that melodic intervals play different roles depend-
ing on their position in the melody. For example, five-tone
melodies tend to start with a relatively large ascending in-
terval at around 5 semitones (perfect fourth), and end with a
small ascending interval at around 2 semitones (major sec-
ond) or a unison.

2 All trend analyses in this paper are analyzed using linear regres-
sions, with 95% confidence intervals derived by bootstrapping over
chains (1,000 replicates, Gaussian approximation).

3Entropy for this experiment was approximated by summing the
contributions from the entropies of all consecutive intervals, where
the entropy for each consecutive interval was computed from the
2-dimensional KDE (as we did for the three-tone melodies).
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Figure 3: Iterated Singing Experiment with Longer Melodies.
(A) Participants hear and sing back five-note melodies. (B)
The entropy of the distribution of intervals over generations,
suggesting an increase in combinatorial structure. (C) KDE
of the four melodic intervals in the last three generations (pur-
ple line). We also plot the distribution of the initial random
stimulus set (red line) and the sung reproductions in the last
three generations shuffling the order of the pitches in each
melody (black dashed line). (D) KDEs of the four intervals
plotted separately over generations. Note. Error bars repre-
sent bootstrapped standard error (1000 replicates).

Effects of Oral Transmission on Melodies

Having demonstrated that our method is efficient to explore
large melodic spaces using online iterated singing experi-
ments, we next look at the effects of oral transmission on
structural features of melodies. This search was motivated by
two intertwined bodies of research: (1) cross-cultural stud-
ies looking at widespread melodic features across cultures
(Brown & Jordania, 2013; Mehr et al., 2019; Savage et al.,
2015, 2017) and (2) research on culturally specific character-
istics of listeners’ previous musical exposure (Hannon & Tre-
hub, 2005; Loui, Wessel, & Kam, 2010; Jacoby et al., 2019,
2021). While the former suggests that knowledge of musical
structure may stem from universal constraints in our vocal
and auditory system, the latter suggests that such knowledge
may be acquired via exposure to specific music cultures. Al-
though the current experiments are unable to distinguish be-
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tween these two accounts, one should consider both when in-
terpreting the following results.

Figure 4 summarizes the results of this analysis. First, we
found that melodies are biased towards a small homogenized
vocabulary of intervals (Figure 4A). This analysis was per-
formed using the peak finding procedure described above.
Indeed, the number of detected peaks significantly decreases
over generations (Experiment 1: B = -.282, 95% CI [-.448,
-.115]; Experiment 2: B =-.311,95% CI [-.481, -.140]). This
finding is consistent with large-scale quantitative data show-
ing that melodies across cultures tend to contain a small num-
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ber of elements (7 or less) per octave (Savage et al., 2015).

Second, we observed that melodic intervals become signif-
icantly smaller over generations (Figure 4B), as indicated by
the absolute mean interval size (Experiment 1: B = -.078,
95% CI [-.112, -.045]; Experiment 2: B = -.074, 95% CI
[-.111, -.037]). This effect is consistent with a widely ob-
served feature that characterizes animal and human vocal-
izations (Savage et al., 2015; Tierney et al., 2011): jumps
between consecutive pitches in vocal utterances tend to be
small.

Third, orally transmitted melodies increasingly exhibit
arch-shaped musical contours. Figure 4C (left plot) shows
the average pitch of each note in the five-note melodies ex-
periment, showing that melodies evolve from flat melodic
contours (see baseline) to distinctive arched contours*. We
further examined the emergence of archetypal contours by
calculating a measure of contour smoothness using Shannon
entropy. Each interval was coded to three possible values: 0
if it was approximately a unison (between -0.5 and 0.5 semi-
tones), +1 if it was ascending (larger than 0.5 semitones), and
-1 if it was descending (smaller than -0.5 semitones). We
then computed the entropy of this discrete distribution of con-
tour types over generations. The results indicate a significant
decrease of contour entropy over generations (right plot in
Figure 4C), revealing that fewer melodic contours become
increasingly reused over time (B = -.074, 95% CI [-.100, -
.047]). The prevalence of simple and archetypal contours has
been found to be widespread both in bird song (Tierney et al.,
2011) and human song across cultures (Savage et al., 2017).

Since our participants had significant prior exposure to
Western music (they were all recruited from the US), we
asked whether such exposure may have had an effect on
evolving melodies. First, we looked at the interval distri-
bution of a large corpus of popular Western melodies as a
proxy of participants’ previous musical exposure (magenta
color in Figure 5A). This corpus consisted of a a subset of
6200 melodies from the Lakh MIDI Dataset (Raffel, 2016)
that have been matched to entries in the Million Song Dataset
(Bertin-Mahicux, Ellis, Whitman, & Lamere, 2011)5. We
then calculated how aligned the melodic intervals in our ex-
periments were with the prevalence of intervals in the cor-
pus. Results indicate that melodies become increasingly more
aligned with the corpus data (Figure 5B, left plot), although
this trend was only significant in Experiment 1 (B = .035,
95% CI[.010, -.059]; Experiment 2: B=.018, 95% CI [-.002,
.04]).

In addition, we ran a listening experiment with a separate
group of Western participants to measure the perceived pleas-
antness of melodic intervals. In this experiment, 91 US par-
ticipants (aged 22-77, M = 38.83, SD = 11.90) were presented

4This analysis only uses data from Experiment 2 because the pro-
portion of musical contours in Experiment 1 is skewed from the start
due to the sampling procedure.

SThis dataset provides a collection of audio features and meta-
data for a million contemporary popular music tracks (http://
millionsongdataset.com/).
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with melodic intervals (two tones played sequentially) and
asked to rate how pleasant they sounded, on a 7-point scale.
We evaluated 5000 intervals ranging from -15 to 15 semi-
tones, with each participant rating an average of 80 intervals.
The intervals were generated following the same procedure
described above (see Melody Generation). However, to re-
duce the vast pitch space, this experiment only used integer
MIDI notes. The resulting aggregated scores provide a mea-
sure of melodic pleasantness in Western music (green color
in Figure 5A). As shown in Figure 5B (right plot), there is a
small but significant increase in the perceived pleasantness of
melodic intervals over generations (Experiment 1: B = .014,
95% CI1 [.008, .019]; Experiment 2: B =.004, 95% CI [.001,
.007]).

Finally, we examined the evolution of copying error (the
distance between the target and sung production), using the
root mean square error (RMSE) in both pitch and interval do-
mains (Figure 4D). In Experiment 1, we excluded the first
generation from the analysis because copying error was sur-
prisingly small (this is probably an artifact of the melody gen-
eration process). However, after the first generation, copy-
ing error significantly decreased over time (Pitch: B = -.075,
95% CI [-.101, -.049]; Interval: B = -.072, 95% CI [-.094,
-.049]). In Experiment 2, the decrease in copying error was
clear from the start and comparatively larger than in Experi-
ment 1 (Pitch: B =-.132,95% CI [-.176, -.088]; Interval: B =
-.161, 95% CI [-.221, -.100]). Overall, this finding suggests
that oral transmission shapes structural features of melodies
so they become easier to learn and reproduce over genera-
tions.

Discussion

We introduced a novel method to automate cultural transmis-
sion experiments in the singing modality and over the inter-
net. Overall, we found that oral transmission has profound
effects on the evolution of melodies, shaping initially random
sounds into more structured systems — i.e., using fewer build-
ing blocks (intervals, contours) that are increasingly reused
and combined. Importantly, structural features that emerged
artificially from our experiments are largely consistent with
widespread melodic features observed in most musical tra-
ditions across the world (Brown & Jordania, 2013; Mehr et
al., 2019; Savage et al., 2015). Moreover, we found that
melodies tend to align with certain cultural conventions of
Western music (e.g., use of harmonic intervals), reflecting our
participants’ predominantly Western background.

How can we explain the emergence of such melodic fea-
tures? They likely stem from a complex interplay between
motor constraints, cognitive biases, and cultural exposure
(Tomlinson, 2015). However, the current paradigm is limited
in its ability to disentangle different kinds of transmission bi-
ases, such as cognitive versus production constraints. Despite
this, we found that melodies in our experiments were increas-
ingly more aligned with a separate perception-only prefer-
ence experiment (Figure 5B), suggesting that perception (and
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not only production) influences the oral transmission of mu-
sic. Future experiments will help us better determine the rel-
ative contribution of perception and production, for instance
by conducting perceptual only experiments on cultural trans-
mission (Harrison et al., 2020).

Furthermore, our participants had significant prior expo-
sure to Western music and, therefore, the current design is un-
able to distinguish universal transmission biases (e.g., stem-
ming from biological factors) from cultural transmission bi-
ases (e.g. stemming from familiarity with Western tonality).
Future experiments can systematically test this by conducting
large-scale cross-cultural experiments with participants from
diverse musical backgrounds (Jacoby et al., 2021).

Above all, our method is useful for recovering many
transmission biases within a single coherent paradigm that
is cross-culturally generalizable. In particular, our method
makes no assumptions about musical systems a prori, is nat-
ural and intuitive to everyone (e.g., singing), and works using
standard computers available to most people online, enabling
experiments that would be nearly impossible in the labora-
tory. We are truly excited about the potential of this work
to increase the reach, scalability, and diversity of research on
cultural evolution, music cognition, and cognitive science.
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